Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Darwin's theory of natural selection provides two seemingly contradictory hypotheses for explaining the success of biological invasions: (1) the pre‐adaptation hypothesis posits that introduced species that are closely related to native species will be more likely to succeed due to shared advantageous characteristics; (2) the limiting similarity hypothesis posits that invaders that are more similar to resident species will be less likely to succeed due to competitive exclusion. Previous studies assessing this conundrum show mixed results, possibly stemming from inconsistent study spatial scales and failure to integrate both functional and phylogenetic information. Here, we address these limitations using a 33‐year grassland successional survey at Cedar Creek Ecosystem Science Reserve (USA). We incorporate functional dissimilarities, phylogenetic distances, environmental covariates, and species origin data for 303 vascular plant taxa (256 native, 47 introduced), collected from 2700 plots. In contrast with other studies, we test both hypotheses at two fine spatial scales—neighborhood (0.5 m2) and site (~40 m2)—to better capture competition and environmental filtering, respectively. Findings related to Darwin's naturalization conundrum depended on spatial scale and dissimilarity metric. Our results agreed with the pre‐adaptation hypothesis at site scale (40 m2)—a much finer resolution than typically used to test the pre‐adaptation hypothesis—highlighting the role of environmental filtering. At the neighborhood scale (0.5 m2), support for the limiting similarity hypothesis emerged when using functional dissimilarity, while phylogenetic distance aligned with the pre‐adaptation hypothesis, demonstrating that different dissimilarity metrics can yield contrasting conclusions. In addition, native and introduced species showed different abundance patterns in relation to functional ranked dissimilarities, with introduced species reaching higher cover when they were taller than co‐occurring species, had higher leaf dry matter content (LDMC) and lower seed mass. Introduced species also reached high cover with higher soil N concentrations and a shorter time after colonization, relative to native species. Our results suggest that inconsistent findings related to Darwin's naturalization conundrum may arise from an overreliance on single dissimilarity metrics and the use of spatial scales failing to capture underlying ecological processes. This highlights the need for more nuanced methodologies when testing the pre‐adaptation and limiting similarity hypotheses.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species’ responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.more » « less
-
Abstract This study compares real-time forecasts produced by the Warn-on-Forecast System (WoFS) and a hybrid ensemble and variational data assimilation and prediction system (WoF-Hybrid) for 31 events during 2021. Object-based verification is used to quantify and compare strengths and weaknesses of WoFS ensemble forecasts with 3-km horizontal grid spacing and WoF-Hybrid deterministic forecasts with 1.5-km horizontal grid spacing. The goal of such comparison is to provide evidence as to whether WoF-Hybrid has performance characteristics that complement or improve upon those of WoFS. Results indicate that both systems provide similar accuracy for timing and placement of thunderstorm objects identified using simulated reflectivity. WoF-Hybrid provides more accurate forecasts of updraft helicity tracks. Differences in forecast quality are case dependent; the largest difference in accuracy favoring WoF-Hybrid occurs in eight cases identified as “high-impact” by the quantity of National Weather Service Local Storm Reports, while WoFS performance is favored at short lead times for 10 “moderate-” and 13 “low-impact” events. WoF-Hybrid reflectivity objects are closer in size and location to observed objects. However, a higher thunderstorm overprediction bias is identified in WoF-Hybrid, particularly early in the forecast. Two severe weather events are selected for detailed investigation. In the case of 26 May, both systems had similar skill; however, for 10 December, WoF-Hybrid forecasts significantly outperformed WoFS forecasts. These results show improved performance for WoF-Hybrid over WoFS under certain regimes that warrants further investigation. To understand reasons for these differences will help incorporate higher-resolution modeling into Warn-on-Forecast systems. Significance StatementThe NOAA Warn-on-Forecast (WoF) project uses advanced data assimilation for rapidly updating numerical weather prediction systems to provide forecasts of individual thunderstorms. Forecasts show promise for enabling greater warning lead time for some storms. The flagship Warn-on-Forecast System (WoFS) is a 36-member analysis and 18-member forecast system at 3-km grid spacing. The project also produced a single member system that employs variational analysis and produces a deterministic forecast at 1.5-km grid spacing (WoF-Hybrid). This study seeks to evaluate and compare the performance of WoFS and WoF-Hybrid for 31 severe weather events that occurred during 2021. Results found that WoF-Hybrid predicts storm rotation particularly well compared to WoFS, and several other strengths and limitations of both systems are identified. This research may help us understand the complementary nature of two systems and improve our ability to provide more reliable 0–6-h forecasts in the future.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Temperature and biodiversity changes occur in concert, but their joint effects on ecological stability of natural food webs are unknown. Here, we assess these relationships in 19 planktonic food webs. We estimate stability as structural stability (using the volume contraction rate) and temporal stability (using the temporal variation of species abundances). Warmer temperatures were associated with lower structural and temporal stability, while biodiversity had no consistent effects on either stability property. While species richness was associated with lower structural stability and higher temporal stability, Simpson diversity was associated with higher temporal stability. The responses of structural stability were linked to disproportionate contributions from two trophic groups (predators and consumers), while the responses of temporal stability were linked both to synchrony of all species within the food web and distinctive contributions from three trophic groups (predators, consumers, and producers). Our results suggest that, in natural ecosystems, warmer temperatures can erode ecosystem stability, while biodiversity changes may not have consistent effects.more » « less
-
Abstract Hail forecasts produced by the CAM-HAILCAST pseudo-Lagrangian hail size forecasting model were evaluated during the 2019, 2020, and 2021 NOAA HazardousWeather Testbed Spring Forecasting Experiments. As part of this evaluation, HWT SFE participants were polled about their definition of a “good” hail forecast. Participants were presented with two different verification methods conducted over three different spatiotemporal scales, and were then asked to subjectively evaluate the hail forecast as well as the different verificaiton methods themselves. Results recommended use of multiple verification methods tailored to the type of forecast expected by the end-user interpreting and applying the forecast. The hail forecasts evaluated during this period included an implementation of CAM-HAILCAST in the Limited Area Model of the Unified Forecast System with the Finite Volume 3 (FV3) dynamical core. Evaluation of FV3-HAILCAST over both 1-h and 24-h periods found continued improvement from 2019 to 2021. The improvement was largely a result of wide intervariability among FV3 ensemble members with different microphysics parameterizations in 2019 lessening significantly during 2020 and 2021. Overprediction throughout the diurnal cycle also lessened by 2021. A combination of both upscaling neighborhood verification and an object-based technique that only retained matched convective objects was necessary to understand the improvement., agreeing with the HWT SFE participants’ recommendations for multiple verification methods.more » « less
An official website of the United States government
